a2 United States Patent

Schneider et al.

US009201669B2

US 9,201,669 B2
Dec. 1, 2015

(10) Patent No.:
(45) Date of Patent:

(54)

(735)

(73)

")

@

(22)

(65)

(60)

(1)

(52)

(58)

SYSTEMS AND METHODS FOR MOBILITY
SERVER ADMINISTRATION

Inventors: Kenneth Cyril Schneider, Blue
Mountains (CA); Lenny Kwok-Ming
Hon, Richmond Hill (CA); Qiusheng
Wang, Burlington (CA)

Assignee: BlackBerry Limited, Waterloo, Ontario
(CA)
Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35
U.S.C. 154(b) by 1592 days.

Appl. No.: 12/771,364

Filed: Apr. 30, 2010
Prior Publication Data
US 2010/0281487 Al Nov. 4, 2010

Related U.S. Application Data

Provisional application No. 61/175,024, filed on May
3, 2009.

Int. Cl1.

GO6F 9/445 (2006.01)

HO4L 29/06 (2006.01)

U.S. CL

CPC ... GO6F 9/44505 (2013.01); GO6F 9/44526

(2013.01); GO6F 9/44536 (2013.01); GO6F
9/44552 (2013.01); HO4L 63/10 (2013.01);
HO4L 63/20 (2013.01)
Field of Classification Search
CPC GOGF 9/44526; HO4L 63/20; HO4L 63/10
USPC ..ccveeee 709/201-230; 718/102-106, 762
See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

5,797,128 A * 8/1998 Bimbaumc...ccooovnrnnn. 1/1

5,889,953 A * 3/1999 Thebautetal. 709/221

8,250,540 B2* 82012 Kulagaetal. 717/126

8,413,209 B2* 4/2013 Alderaetal. 726/1

8,635,618 B2* 1/2014 Aggarwal et al. ... 718/102
2003/0191763 Al* 10/2003 Chengetal. 707/100
2004/0049841 Al* 3/2004 Brotherstonetal. ... 4/480
2004/0064348 Al* 4/2004 Humenansky et al. 705/7
2004/0162882 Al* 82004 Moracooovvvevvenrennn.. 709/207
2005/0172015 Al 8/2005 Rana et al.

(Continued)
OTHER PUBLICATIONS

International Search Report for International Patent Application No.
PCT/CA2010/000644, dated Jul. 27, 2010, 4 pages.

Written Opinion of the International Searching Authority for Inter-
national Patent Application No. PCT/CA2010/000644, dated Jul. 27,
2010, 8 pages.

(Continued)

Primary Examiner — Lashonda Jacobs
(74) Attorney, Agent, or Firm — Jon Gibbons; Fleit Gibbons
Gutman Bongini & Bianco P.L.

(57) ABSTRACT

An administration server of an administration service assigns
attributes to objects by a plug-in of the administration service.
The plug-in implements a method of a functionality set and
the method is callable by the administration service to per-
form the assigning. Additionally or alternatively, the admin-
istration server triggers a reconciliation event by changing the
assignment of an attribute of the users that comprise objects
of'plug-ins; determines a scope of the users and which objects
are affected by changing the assignment; and reconciles con-
flicting assignments. Additionally or alternatively, the admin-
istration server adds tasks by the plug-ins to a job created by
the plug-ins with the tasks performing the assigning; and
removes tasks from the job to optimize it.

33 Claims, 16 Drawing Sheets

Crealing a b

am

x

Craating and adding tasks o e opanjob

403

cherduling

Readying the job It sxecution

A0S

X

Exeating the jaske of the job

408

X

arking the jo
e

US 9,201,669 B2
Page 2

(56)

2005/0198273
2006/0195508
2006/0242126
2007/0220599
2008/0052712
2009/0024992
2009/0298478
2009/0300137
2010/0115526

References Cited

U.S. PATENT DOCUMENTS

Al* 9/2005 Childressetal.

Al 8/2006 Bernardin et al.
Al* 10/2006 Fitzhugh

Al* 9/2007 Moenetal. ..

Al* 2/2008 Gustafson et al.
Al* 1/2009 Kulagaetal. ...
Al* 12/2009 Tyhurstetal. ..
Al* 12/2009 Tyhurst et al.

Al* 5/2010 Mincarelli

OTHER PUBLICATIONS
“Improving object-oriented user interfaces with constraints,” RK
Edge, http://www.sciencedirect/com, downloaded Apr. 28, 2010, 2
pages.

~~~~~~~ 709/224 Bertino, Elisa, et al., “Securing XML Documents with Author-X,”
........... 707/3

IEEE Internet Computing, May-Jun. 2001, pp. 21-31.
726/12 International Preliminary Report on Patentiability, received in corre-
”718 101 sponding PCT Application No. PCT/CA2010/000644, Dated May

717177 13, 2011, 16 pages.

455/414.1
... 7097217
....... 718/104 * cited by examiner



US 9,201,669 B2

Sheet 1 of 16

Dec. 1, 2015

U.S. Patent

Y &

204

E

HAIES
BiBdnDI
Aubessop
%,

BNRTABRIT Fa0E0 umm i

L)

'l

AT

N

L.

>
r b
o
-

%

\amn}

%

m 4 &(E fed

wn oo

oo s sonon - csnsoa oot

.,..,...@3 :

sIONASEI IS urbnig

7
) e £ P s 7
LI 4B pUZ-H0EY w }
PO R G UrUTd L j
T,
=
H
P B 94 gl

ATAES UONRIBHILDY




U.S. Patent

Dec. 1, 2015 Sheet 2 of 16

Defining & QU integration poird

k:

Whan an Oi\jé"? 5 10 be displaye

rethod of the plug-in sever | rfgas:r gotiire

ceatinga ]

¥

Discovering registared phug-ng thal
implament & method

&

4

Caliing the mathods of e regislersd phug-

K18

¥

Heturning an ohjeot by & plug-in back-end
atter being called

{Gathering e et cbiscts 10 an anay
and refurning the aray

s

Dizcovenng all the plug-ins that ars
registerad for an k gtggsauasg;@mt

Selling up e ilegration point and pass

tha appropnale appst

k:

NI LT o Y
Uisplaymg onto the GU

SO8
A

5

US 9,201,669 B2



U.S. Patent

Dec. 1, 2015 Sheet 3 of 16

R Y PRV N AT A A vs :
Heosiving & reconcliation everd

b

Delermining @ seope of change based on
& reconniidion svant

&

Racongiing sach gleren of dhangs

£

3

Preparing defivery of reconciied sljects
basad on a reounclied view

3

{3 e don i ben o o o e RN I
Parfarming poshrsconciiation provessing

FG. 3

US 9,201,669 B2



U.S. Patent

Dec. 1, 2015 Sheet 4 of 16

Lrealing & ob

Crasting and atiding fasks o e qpen o

Adiling §E"r=:>*t§m and scheniging
parameles

3

Readying the job B sxecution

3

Exeaiding the laska of e iob

X

Marking the job comprlete wher ali lasks
Have completad

A5
408

US 9,201,669 B2



U.S. Patent Dec. 1, 2015 Sheet 5 of 16 US 9,201,669 B2

500 Job timer 510
\ Wakeup

Find the highest priority job associated with the timer 512
of which the processing window is open

no 514

yes

Get the number of ready tasks N1 in the
job no more than predefined batch size
516

execute the following until finish

no 518

yes Y
(Request N1 job slots for the
| job and N2 Granted

~~

Decrement \ 520
system slots
peynding count Granted System
by N2 Slots?
522

no
/ [Request N2 system slots for the job and N3 Granted]

524
/ yes
526 N2=N3

528 -

Increment the job sysetm slots
pending count by N2-N3

@ yes @ k530

no 532
Delivery N3 tasks (N2=N3 if |
Granted System Slots is "yes”)J
534
536

FIG.5A

~~

~N




U.S. Patent Dec. 1, 2015 Sheet 6 of 16 US 9,201,669 B2

550

/ 552

Find the tasks depending on the one just finished
556

Process finished
task, lets say job
F

(successfully) and mark them ready if they have
no more dependancy. Let's say task set D

N1=1 Execute each
task in set D

[Flnd the highest prlorlty job pending fo system]
)

slots which has one job slot available and it's
processing window is open (same object type

Return the yes
finished task's job slot Found?
to the pool
D 560

564

~N

no

Find a ready task in the finished
task's job (same object type)

568 \\566
yes /\ﬁé
N3=1 o

Return the finished task's job
and system slots to the pool -/570

system
slot
granted

Execute the
task

Flnd a ready task in just finish task 572
job (different object type)

Found?

D
FIG.5B

A




US 9,201,669 B2

Sheet 7 of 16

Dec. 1, 2015

U.S. Patent

SRR

b

oy
i3

T

R

Reed

o

‘nooo
00O

A BRI

\
i
%,

H \K«
bE9 puning
9 g

fel

545
Sy

SRR L




US 9,201,669 B2

Sheet 8 of 16

Dec. 1, 2015

U.S. Patent

1SOH X S UO (X p) ¥ JIOAIRS HOlY @
1SOH dA\ S39 U0 ¢ Jonas Ualy @
¢ VH Jayoredsiq yim g Joaies Ualy [H
I WYH Joyoredsig yum | Jaaios Loy [H
ualy [=

1SOH X ¥ S39g UO (X ) ¥ 10AI8S OUAS §

1SOH dA S39 UO ¢ JonIBS JUAS ©

2 VH Jayoedsiq yim g Jonlas duAks [

I VH J8yoledsiq Yim | Jan1eS oUAg [
UOIBZIUCIYDUAS [

1SOH X # S39 UO (X ¥) ¢ 1oAI8S Adljod @

1SOH dA S39 uo ¢ Jeniag Aoljod @

2 VYH Jayoredsiq yum g sonieg Aoljod [

I YH Jeyoledsig yum | Jenles Adljod [
foljod [

1SOH X ¥ S3g U0 (X ) ¥ Jaydredsiq @
1SOH dA S3g uo ¢ Jaydledsiq @
¢ VH Jeyoiedsiq [
| VH Joyoredsia [H
Jeyoredsia [H

syusuodwio)
SIONOS

=
&S|

slelodiog YN [EF
urewop Aliegyoe|g g

" -

-V.'9ld

Sjusuodwod pue SIaAIeS




US 9,201,669 B2

Sheet 9 of 16

Dec. 1, 2015

U.S. Patent

d. 9l

welsAs syd [H
sva H ./ OLL
©) JOAISS SN UOX ¥ SO @
1ISOH A S3quU0¢gSO & -
Janieg SAW uo (leu'wili‘go-SINgG) SO-SAN & OLZ
SO-SAN [
) 199G SN U0 dJ0WdY S| @
1ISOH dA X39g U0 dA SI ©
spoNzsi-san B | “—gyz
(lourwi‘go-sNg) 0'S SI
SI-SAN [
Buibesss JueIsu| 9210 [
Buibesso|y Jueisu| asipdnoly) [ N
BuiBessapy JUeiSUl BWI] SWeS [H OLL
uoneloge|on [
IENEREE
10108UU0D [ N oL/
uswyoeny [
(esimdnoin) lewy FH—~_
(oulwoq) lews [ Ok,
1SOH X 7 S39 U0 (X {) ¥ 9bueyox3 @ Ho L/
1SOH dA S39 uo ¢ ebueyox3 @
¢ VH Jayoredsiq yum ¢ obueyox3 [ N
| VH Joyoredsiq yum | obueyox3y [H OLL
(ebueyox3) lewz [



U.S. Patent Dec. 1, 2015 Sheet 10 of 16 US 9,201,669 B2
800
|

Role

Software

Policy
\_ y,
Devices

Attach devices

Deployment jobs

Wireless activation
\_ J

N

Servers and components

= BlackBerry domain

B NA Corporate
Servers
E Components

HEEHEH

HEHEHBDH

Dispatcher

Policy

Synchronization

Alert

Email (Exchange)

Exchange 1 with Dispatcher HA 1
Exchange 2 with Dispatcher HA 2
© Exchange 3 on BES VP Host

© Exchange 4 (4 x) on BES 4 x Host
Email (Domino)

Email (GroupWise)

Attachment

Collaboration

MDS-5

MDS-CS

FIG.8A



US 9,201,669 B2

Sheet 11 of 16

Dec. 1, 2015

U.S. Patent

181| S80INIBS MAIA )

(,pases|o, Bsw dsip) sonsners me_oo

aouejsul 1soy 1Ip3 @

g1 abueyoxg h
V| 8bueyox3

0saq

aweu sdourisy| (ebueyox3y) rewg payuoddng )

000’9

IJ

:uoISlop S90IAIeg [rew] Allegyoe|g

[eloudy) Y,

- O

sobesso paJidxg )

:s19)08d Bleq buipuad
:sobesso|y popiemio

sonspels eoueisy|

(abueyox3) rewy

I IVNT ad

aoMeg )
:uonduosaq Ajpuaii4
:aWeU 82IAI9S 1SOH

UOljeWwOju| S0UBYSU| }SOH

Tc_-ms_m uoISUdIXg

SJ9)|1} obessaw [lewg

Buibesso

uoIBLLIOJU| ©oUR)ISU| JSOH
J

P4
018

20UR)SU| |leWT }SOH 8quosa(g

d8'old



US 9,201,669 B2

Sheet 12 of 16

Dec. 1, 2015

U.S. Patent

1

181| s90IMIBS MAIA )
aouelsul Ip3 @"

Agpueig o1 Arewid 198 @_

1
Janojted [enuepy @),
1

N

1
2so |
(1ou'wgo-sng) so-san  |!
uonduosag sweN [
F sooURISU| SO-SAN pauoddng saoue)su| buibessa|y ueisu| 9010 pauoddng

A soaouelsu| buibessopy ueisu| swnowes payoddng

uoljeulIojul 9ouR)SU|

**Joyoredsiq 2quosa(g

sooue)su|

| YH J8yodredsiq < Jeydjedsig < Alobaien Jayojedsiq < sjusuodwon < ajesodion YN < surewoq Aliegyoe|g

.,

006



US 9,201,669 B2

Sheet 13 of 16

Dec. 1, 2015

U.S. Patent

Agpuesg
Arewud

1ISOH dA S349
lan19S SAN

alels Alljigejreny

aweN JoAleS

o_.m.\

soourisu| buibessayy Jurisu asipzdnolr) pauoddng

/_\l\

V| Jeyojedsiq odouejsu| MaIA < }SOH Ulel\ S3g <



U.S. Patent Dec. 1, 2015 Sheet 14 of 16

User Management > Manage Users 1000

Manage Users \

Describe Manage users

US 9,201,669 B2

(" Search Users

(" User Criteria

Display Name:

First Name:

User Name:
e

(" Device Criteria

PIN:
IT Policy:
Last Contact Date:

Phone Number:
|

( Software Configuration Criteria

OS Bundle:

Configuration Set:

1010 >

(" Group Criteria
\ L Specific Group:

(" BlackBerry Enterprise Server Criteria

BlackBerry Enterprise Server
.

(" Email Criteria

Email Address:
State:

L Queued Removal of BES Services:

/ (" Sort Criteria

1010 Sort by

|\
L QQ Basic:

FIG.10A



U.S. Patent Dec. 1, 2015 Sheet 15 of 16 US 9,201,669 B2
| | User ID:
| | Last Name:
| |
| | Model:
| [V IT Policy Status:
| [~ ] Carrier:
| |
| | Application:
[None selected ||
[None selected ||
| M
| | Mail Server:
| |

[Display Name ||
®AtoZ OZto A

\

FIG.10B



US 9,201,669 B2

Sheet 16 of 16

Dec. 1, 2015

U.S. Patent

LEOId

sasn peojed ©
O LI _1\ snjels 19sn

lasn Alagyoe|g se 9|gesiq @

S3g 1usseIp 0} Jasn Auaghoelg youms ©)
snieys Janias aslidiaug Auagyoelg

sjnsaJ youess 0} soeg )
sesn o} abessaw pueg [ |

sesn wp3 @)

90IAI8S UoNRSIUIWPY Allagyoe|g

sweN Jasn

adA] uoneonuayiny

J

~

‘owe 1814

:oweN Ae|dsig

awepN

uoneinblyuo) dIs

sbumos obessop | 921n0p pojenossy | uonewloul Emcanooa /

suoneinbiuod NYIM

so101|0d

suoneinblyuod aiemyos | ssjoy

sdnoio | uonewloyul Jas _ 00tE

"'sJosn abeuely 8qlLoseq
siosn abeuep

1as MBI < sias() abeuey < Juswebeuey Jasn



US 9,201,669 B2

1
SYSTEMS AND METHODS FOR MOBILITY
SERVER ADMINISTRATION

CROSS REFERENCE TO RELATED
APPLICATIONS

The present application claims priority to U.S. Provisional
Patent Application No. 61/175,024, filed May 3, 2009, by Ken
Schneider, et al, entitled “Systems and Methods for Mobility
Server Administration”, all of which are incorporated by ref-
erence herein as if reproduced in its entirety.

FIELD OF TECHNOLOGY

This disclosure relates to systems and methods for support-
ing and provisioning mobile devices, and in particular to
systems and methods for providing administration services to
servers that support mobile devices.

BACKGROUND

A variety of wireless mobile devices are now available,
including devices which support one or more data-related
applications, such as e-mail, calendar, contact management,
other personal information management (PIM) applications,
and other similar applications. Although there exist a variety
of suitable system architectures in which wireless mobile
devices may be applied, an architecture which has found
favor in enterprise environments involves relatively small
wireless mobile devices which implement the aforemen-
tioned data-related applications (e.g., e-mail, calendar, con-
tact management, other personal information management
(PIM) applications, and other similar applications) in con-
junction with enterprise-run “back-end” servers or services
which support these applications, and which may be accessed
by a variety of client devices. For example, an enterprise may
operate one or more servers that provide messaging or e-mail
services to a variety of client devices. The enterprise may also
operate one or more servers that provide calendar, contact
management, or other PIM services to client devices. Some-
times, several of these services are integrated in a “group-
ware” server.

In general, the enterprise messaging and PIM servers
(hereafter, “application servers”) have been designed to sup-
port a particular class of conventional client devices consist-
ing of conventional personal computers (whether in notebook
or other form), which are connected to the enterprise network
either directly, or indirectly via a connection method which is
largely transparent to the server. Many wireless mobile
devices are not conventional client devices, in that they are
not conventional personal computers or are not directly or
transparently connected to the enterprise network. In order to
provide a high level of service to wireless mobile devices
(other than conventional client devices), an enterprise may
deploy one or more mobility servers (along with other
optional infrastructure elements) which provide intermedia-
tion services between the application servers and the wireless
mobile devices. The intermediation services may include, for
example, management of synchronization of contents
between the application server and the wireless mobile
device, rapid delivery of e-mail or other content to the wire-
less mobile device, and adaptation of content to be delivered
to the wireless mobile device in a manner consistent with the
capabilities of the device and the transport media (e.g., carrier
and transport networks) by which the device is connected to
the application server.

10

15

20

25

30

35

40

45

50

55

60

65

2

A concern among information technology personnel
responsible for managing an enterprise fleet of wireless
mobile devices and the enterprise infrastructure to support
them is the orderly administration of a mobility server, and its
associated wireless mobile devices, their users, the services
and applications provided thereto, and the policies governing
their operation.

BRIEF DESCRIPTION OF THE DRAWINGS

The disclosure will be more clearly understood by refer-
ence to the following detailed description of example
embodiments and in conjunction with the accompanying
drawings by way of illustration. In the drawings, like numer-
als describe substantially similar components throughout the
several views.

FIG. 1 is a block diagram depicting a system constructed
according to an aspect of the present disclosure for providing
administration services to a mobility server;

FIG. 2 is a flow diagram depicting an example method of
integration in accordance with a “plug-in” software compo-
nent arrangement for use with the system of FIG. 1;

FIG. 3 is a flow diagram depicting an example method for
reconciling objects in conjunction with the system of FIG. 1;

FIG. 4 is a flow diagram depicting an example method of
creating and executing a job for use with the system of FIG. 1;

FIG. 5A and FIG. 5B are a flow diagram illustrating an
example method for executing tasks and processing a finished
task for use with the system of FIG. 1;

FIG. 6 is a block diagram depicting a communications
system, showing an example environment in conjunction
with which the system of FIG. 1 may be used;

FIGS. 7A and 7B are a display diagram depicting an
example display area of a graphical user interface for use in
conjunction with the system of FIG. 1;

FIGS. 8A and 8B are a display diagram depicting an
example display area of a graphical user interface for use in
conjunction with the system of FIG. 1;

FIGS. 9A and 9B are a display diagram depicting an
example display area of a graphical user interface for use in
conjunction with the system of FIG. 1;

FIGS. 10A and 10B are a display diagram depicting an
example display area of a graphical user interface for use in
conjunction with the system of FIG. 1; and

FIG. 11 is a display diagram depicting an example display
area of a graphical user interface for use in conjunction with
the system of FIG. 1.

DETAILED DESCRIPTION

According to an aspect of the present disclosure, and as
best seen in FIGS. 1 and 6, an administration service 100 is
provided for administering a mobility service 130, including
users, devices, services, and policies associated therewith.
FIG. 6 is a block diagram depicting, as an example environ-
ment in which the administration service 100 may be
employed, a communications system 680. As best seen in
FIG. 6, communications system 680 comprises an enterprise
network part 682, and a network part 684 which is generally
external to the enterprise network 682. For a non-limiting
example, the external network part 684 may comprise a wire-
less network 140 which is operatively coupled to the enter-
prise network 682 through a transport network 686.

As best seen in FIGS. 1 and 6, an administration server 601
of administration service 100 can administer attributes of one
or more users (e.g., user 651). A user can use many different
services, including services provided by mobility service



US 9,201,669 B2

3

130, messaging/groupware service 120, and various other
applications services and servers generally shown as 623, all
of' which the user can access via user equipment (UE 150). In
some embodiments, the mobility service 130 provides an
intermediation function between UE 150 and various services
and servers, e.g., 120 and 623, of enterprise network 682. The
intermediation services may include, for example, manage-
ment of synchronization of contents between application ser-
vices, such as messaging/groupware service 120, server 623,
and the UE 150; rapid delivery of e-mail or other content to
the UE 150; and adaptation of content to be delivered to the
UE 150 in a manner consistent with the capabilities of the UE
150 and such elements of external network 684 as wireless
network 140 and transport network 686. In some embodi-
ments, although the mobility service 130 significantly
improves the user experience, the user may be unaware of its
existence. In other embodiments, the mobility service 130
may directly provide user-visible services. A user 651 can be
a member of one or more groups (660-661 and 663) and be
serviced by one or more servers (631 and 621) of one or more
services (130 and 120). Additionally, a group (e.g., 662) can
comprise one or more other groups (e.g., 661).

Examples of attributes that can be assigned to a user (651)
can include: information technology (IT) policies, software
configurations, applications (which may be required,
optional, or disallowed), device software configurations,
device software bundles, native application settings, or any
other application settings. The management and assignment
of the number, types, and functionality of attributes can be
controlled by the administration server 601. As best seen in
FIG. 1, the functionality of the administration service 100
may be extended by additional software components 103,
104, and 105, referred to hereafter as “plug-ins”. Although
three plug-ins are shown and described, any number of plug-
ins can be used. Thus, the attributes that administration server
601 can manage and assign can be continuously extended by
adding plug-ins, as discussed further below in the section
titled PLUG-INS.

Additionally, attributes can also be assigned to groups
(660-663), services (120 and 130), servers (631-634 and 621-
623), and can be assigned to domains upon which the servers
(631-634 and 621-623) reside. A user (651) can inherit
attributes assigned to groups, services, servers, and domains
with which the user is associated. Users may inherit or be
assigned an attribute that conflicts with other attributes that
are assigned to groups, services, servers, or domains with
which the user is associated. When various attributes that are
assigned to a user conflict, a reconciliation of the various
attributes can occur based on rules that indicate which assign-
ment has priority so that the proper attribute can be assigned
to the user, which is discussed below in the section titled
RECONCILIATION MANAGEMENT.

Additionally, when an attribute of a group, server, service,
or domain is changed, all the users associated with that group
server service or domain can be affected and may need rec-
onciliation. Also, when one or more attributes are changed, a
job can be created that comprises one or more tasks that bring
about the assignment of a reconciled attribute to a user. Mul-
tiple tasks of multiple jobs may bring about similar assign-
ments resulting in duplicate and/or superfluous tasks that can
be optimized out to reduce the number of duplicate or super-
fluous tasks, which is discussed below in the section titled
JOB MANAGEMENT.

The present application relates to mobile communications
systems, which may be implemented using a variety of elec-
tronic and optical technologies, including but not limited to:
analog electronic systems; digital electronic systems; micro-

5

10

15

20

25

30

40

45

55

60

65

4

processors and other processing elements; and software and
otherwise embodied collections of steps, instructions, and the
like, for implementing methods, processes, or policies in
conjunction with such systems and processing elements. It
will be appreciated that in the relevant arts, various signal
leads, busses, data paths, data structures, channels, buffers,
message-passing interfaces, and other communications paths
may be used to implement a facility, structure, or method for
conveying information or signals, and are often functionally
equivalent. Accordingly, unless otherwise noted, references
to apparatus or data structures for conveying a signal or infor-
mation are intended to refer generally to all functionally
equivalent apparatus and data structures.

Plug-Ins

FIGS. 1 and 6 are a block diagrams depicting a communi-
cations system 680 that includes one or more user equipment
(UE) 150, wireless network 140, mobility service 130, mes-
saging/groupware service 120, and administration service
100. UE 150 can be used to send and receive messages via
wireless network 140, messaging/groupware service 120, and
mobility service 130. Examples of UE 150 include smart
phones such as those commercially available under the
BLACKBERRY brand, cellular telephones, or any other por-
table handheld device that can wirelessly send and receive
messages.

Wireless network 140 provides for the communication
between UE 150 and messaging/groupware service 120,
other services or servers 623 (FIG. 6) and mobility service
130. The wireless network 140 may be implemented as any
suitable wireless access network technology. By way of
example, but not limitation, the wireless network 140 may be
implemented as a wireless network that includes a number of
base stations (not shown), each containing radio transmitting
and receiving equipment adapted to provide wireless radio-
frequency (RF) network service or “coverage” to a corre-
sponding area or cell. The wireless network 140 is typically
operated by a mobile network service provider that provides
subscription packages to users of wireless mobile devices or
user equipment (UE) 150. The wireless network 140 may be
implemented as any appropriate wireless network, including
but not limited to any to one or more of the following wireless
network types: Mobitex Radio Network, DataTAC, GSM
(Global System for Mobile Communication), GPRS (General
Packet Radio System), TDMA (Time Division Multiple
Access), CDMA (Code Division Multiple Access), CDPD
(Cellular Digital Packet Data), iDEN (integrated Digital
Enhanced Network), EvDO (Evolution-Data Optimized)
CDMA2000, EDGE (Enhanced Data rates for GSM Evolu-
tion), UMTS (Universal Mobile Telecommunication Sys-
tems), HSPDA (High-Speed Downlink Packet Access), IEEE
802.16e (also referred to as Worldwide Interoperability for
Microwave Access or “WiMAX). Other network types and
technologies could also be used. Wireless network 140 could
also be implemented as a wireless local area network
(WLAN) or wireless metropolitan area network (WMAN) or
any combination of the aforementioned networks. As best
seen in FIG. 6, a transport network may be used to couple
wireless network 140 to elements of the enterprise network
682. Transport network 686 may be implemented using any
suitable network technology for coupling the wireless net-
work 140 and the enterprise network 682. For example, trans-
port network 686 may be implemented using any combina-
tion of the public Internet, private network facilities, leased
facilities, private overlays on a shared network (sometimes
called a virtual private network or “VPN”), or any other
suitable network technology. Enterprise network 682 may be
implemented using any suitable network technology includ-



US 9,201,669 B2

5

ing local network technologies (LLANs), wide-area network
technologies (WANSs), wireless network technologies, and
the like. Any of the networks mentioned may employ optical,
electrical, coaxial, waveguide, free-space radio or micro-
wave, or any other suitable media, in conjunction with
switches, routers, and other appropriate interconnection
means.

In some embodiments, the mobility service 130 provides
an intermediation function between UE 150 and various ser-
vices and servers, e.g., 120 and 623, of enterprise network
682. The intermediation services may include, for example:
management of synchronization of contents between appli-
cation services, such as messaging/groupware service 120,
server 623, and the UE 150; rapid delivery of e-mail or other
content to the UE 150; and adaptation of content to be deliv-
ered to the UE 150 in a manner consistent with the capabilities
of the UE 150 and such elements of external network 684 as
wireless network 140 and transport network 686. For
example, mobility service 130 can provide for synchronizing
messages between one or more UEs 150 and messaging/
groupware service 120. Mobility service 130 can comprise
one or more programs operating on one or Mmore servers.
Mobility service 130 can use multiple policies to control how
and what messages and data are synchronized with UEs 150.
A suite of software that implements a mobility service is
commercially available from Research In Motion under the
name BLACKBERRY ENTERPRISE SERVER software.

Messaging/groupware service 120 can send and receive
messages to and from users of its service and can comprise
one or more programs operating on one or Mmore servers.
Programs that operate as messaging/groupware services are
commercially available from Microsoft under the name
EXCHANGE software, from IBM under the name LOTUS
DOMINO software, and from Novell under the name
GROUPWISE software. Other messaging/groupware soft-
ware could also be used. Types of messaging/groupware ser-
vices can include email service, instant messaging service,
session initiation protocol (SIP) service, or any other service
that allows for sending and receiving messages to and from
users.

Administration service 100 can provide a single point for
all management activities within the mobility service 130.
Many areas of independent functionality are managed by
administration service 100. Administration service 100 del-
egates various management details to independent compo-
nents that implement specific areas of functionality. These
independent components are known as “plug-in” modules
(103, 104, and 105) that each comprise a respective plug-in
back-end component (113, 114, and 115) and can optionally
comprise a respective plug-in GUI component (163, 164, and
165). Plug-in modules (plug-ins) can interact with Adminis-
tration service 100 via a plug-in graphical user interface
(GUI) infrastructure 101 and via a plug-in server infrastruc-
ture 102.

Plug-in GUIs 163, 164, and 165 of plug-ins 103, 104, and
105 interact with plug-in GUI infrastructure 101 through one
or more GUI integration points. A GUI integration point
includes a place in the GUI of administration service 100
where user interaction can take place. Integration points can
be defined by: a navigation location to get to a point in the
GUI, a mounting point where integration is to take place; and
contiguous screen area boundaries into which the plug-ins
(103-105) canrender information and interact with the user. A
GUI integration point can be any of several types including: a
navigation tree node, a page, a tab, a band, and a link, and an
item in a context menu (a pop-up menu), or any other GUI
element.

5

10

15

20

25

30

35

40

45

55

60

65

6

A navigation tree node GUI integration point can comprise
one or more nodes in a navigation tree. FIGS. 7A and 7B are
a display diagram showing an example navigation tree in
display area 700 with multiple integration points 710 outlined
in black.

FIGS. 8A and 8B are a display diagram showing an
example Page GUI Integration Point. A Page GUI integration
point can comprise the full screen under the context title as
shown by area 810 of display area 800.

FIGS. 9A and 9B are a display diagram showing an
example tab GUI integration point. A tab GUI integration
point can comprise a tab plus the screen area below the tab as
shown by area 910 of display area 900.

FIGS. 10A and 10B are a display diagram showing an
example band GUI integration point. A band GUT integration
point can comprise a horizontal slice of the screen delimited
by a new band as shown by areas 1010 of display area 1000.

FIG. 11 is a display diagram showing an example link GUI
integration point. A link GUI integration point can comprise
one or more links on the bottom of a screen as shown by area
1110 of display area 1100. The link may be clicked on to
navigate to other portions of the GUI or to cause an action to
be performed such as reloading the display of a user.

Asbestseenin FIG. 1, plug-in back-ends 113, 114, and 115
of plug-ins 103, 104, and 105, respectively, interact with
plug-in server infrastructure 102 through one or more func-
tionality sets. A functionality set includes the one or more
functions or methods that are implemented by a plug-in (e.g.,
103, 104, and 105) and used by the plug-in server infrastruc-
ture 102. Assigning the attributes to the users can be carried
out through the execution of these methods. Any number of
functionality sets can be defined and supported by adminis-
tration service 100 and/or plug-in server infrastructure 102,
including: a server functionality set, a user functionality set, a
reconciliation functionality set, and a delivery functionality
set. Also, a plug-in (e.g., plug-in A 103) can define its own
functionality set which can then be implemented by other
plug-ins (e.g., plug-ins B 104 and C 105). In this case, the
extended functionality set is used by the plug-in that defines
the extended functionality set. A functionality set allows for
the implementation of functionality to be delegated to a plug-
in without the plug-in server infrastructure knowing anything
about the implementation of that functionality.

Administration service 100 can provide a full object data
model for administration. Included within this data model are
various base objects which are used within functionality sets.
A plug-in which implements a functionality set that includes
base objects as parameters will extend those base objects with
the plug-in’s own specific attributes. These extended or poly-
morphic objects can be handled by the administration service
100 without the plug-in server infrastructure 102 knowing
about any of the specific extensions.

The combination of functionality sets and polymorphic
objects allows for the seamless integration of a plug-in. For
example, plug-in A 103 can extend an extant user object with
its own specific user attributes and, similarly, plug-in B 104
can extend the extant user object with its own specific user
attributes. In other words, plug-in A can have a userA object
and plug-in B can have a userB object, wherein both the userA
objectand the userB object extend from the extant user object.
The administration service 100 can show all the attributes
from the extant user object, the userA object, and the userB
object and also allow these attributes to be edited and saved
via plug-ins A 103 and B 104.

FIG. 2 is a flow diagram depicting an example method by
which the integration of a plug-in can take place. The steps or
operations described herein are examples. There may be



US 9,201,669 B2

7

many variations to these steps or operations without departing
from the scope of this disclosure. For instance, where appro-
priate, the steps may be performed in a differing order, or
steps may be added, deleted, or modified. At step 201, plug-in
GUTI infrastructure can define a GUI integration point, such as
a tab GUI integration point, for plug-ins A 103 and B 104 to
display and/or edit attributes.

Atstep 202, the plug-in GUI infrastructure 101 determines,
for example, that user objects are to be displayed, and accord-
ingly, the plug-in GUI infrastructure 101 calls a find user
method defined by the plug-in server infrastructure 102.

At step 203, the find user method can discover all of the
plug-ins (e.g., plug-ins A 103 and B 104) that are currently
registered which implement the user functionality set (this is
the functionality set that includes the plug-ins’ implementa-
tions of the find user method). At step 204, the plug-in server
infrastructure 102 can then iteratively call the find user
method of plug-ins A 103 and B 104 through the user func-
tionality sets of plug-ins A 103 and B 104.

At step 205, plug-in back-ends A 163 and B 164 can return
an object associated with the find user method. More specifi-
cally, the result of calling, in step 204, the find user method of
the user functionality set implemented by plug-in A 103 is
that the plug-in back-end A 163 returns a userA object. Simi-
larly, the result of calling, in step 204, of the find user method
of'the user functionality set implemented by plug-in B 104 is
that the plug-in back-end B 164 returns a userB object.

Atstep 206, the polymorphic user objects (the userA object
and the userB object) can be gathered into an array and
returned by the plug-in server infrastructure 102 to the plug-in
GUI infrastructure 101.

At step 207, the plug-in GUI infrastructure 102 has the full
set of user attributes (i.e., the array of user, userA, and userB
objects) and discovers all of the plug-ins that are registered for
the tab GUI integration point.

At step 208, for each registered plug-in, plug-in GUI infra-
structure 102 sets up a tab and passes the polymorphic objects
from the array to the appropriate plug-in GUIs to be rendered.
As an example, the tab integration point for Plug-in A is
called, passing the userA object, and the plug-in renders the
attributes on the GUI. Similarly, the tab integration point for
plug-in B is called, with the userB object, and the plug-in
renders the attributes on the GUI.

At step 209 the full user object is displayed on the GUI of
the administration service 100, which was facilitated by both
the plug-in GUI infrastructure 101 and by the plug-in server
infrastructure 102 without either of them knowing any of the
plug-in specific details about the user.

In addition to displaying attributes, the plug-in architecture
of administration service 100 also supports saving and
searching the attributes. Many other functionalities can be
supported by the plug-in architecture.

The plug-in architecture of administration service 100 via
plug-in GUI infrastructure 101 and plug-in server infrastruc-
ture 102 may provide many potential benefits. One potential
benefit is that the plug-in server infrastructure does not need
to know any of the specific details of the specialized manage-
ment components (plug-ins) that implement functionality
sets and provide the functionality of the administration ser-
vice 100.

Additionally, plug-in modules can be upgraded indepen-
dently of administration service 100 or any other plug-in
module at any time. Also, new plug-in modules can be added
at any time and they simply appear in the administration
service 100 GUIL

Another potential benefit is that plug-in modules can be
developed independently, including by external third parties,

10

15

20

25

30

35

40

45

50

55

60

65

8

and still be seamlessly incorporated into administration ser-
vice 100 and look like a natural part of administration service
100.

Reconciliation Management

Administration service 100 can manage the assignment of
attributes to users, groups, servers, services, and domains.
These attributes can include such objects as applications,
data, access rights, device configurations, software configu-
rations, and policies. Sometimes, one or more plug-ins may
try to set an attribute of a group (or user, service, server, or
domain) that results in a conflict with one or more attributes
that are directly or indirectly assigned to or inherited by a user.
Administration service 100 can resolve conflicts that arise
from reconciliation objects being assigned to the users,
groups, servers, services, or domains.

Examples of reconciliation objects can include: IT Poli-
cies, software configurations, applications (which may be
required, optional, or disallowed), application control policy
(ACP) for unlisted applications, device software configura-
tions, device software bundles, native application settings or
any other application settings. The reconciliation objects are
plug-in polymorphic objects, wherein the plug-in server
infrastructure need not know the details of the reconciliation
objects, but does know that they can be assigned to users,
groups, services, servers, and domains. A plug-in can define
new reconciliation objects at any time and extend the func-
tionality of the entire system from a reconciliation point of
view.

The following set of conditions is an example illustrating a
situation in which reconciliation may be useful. A user is
defined to a member of group A and group A is defined to be
a member of group B. (As mentioned earlier, a group may
contain other groups.) Subsequently, an attribute (IT Policy 1)
is assigned directly to the user and another attribute (IT Policy
2) is assigned to group B. This means that the user would be
assigned both IT Policy 1 and IT Policy 2. However, a con-
straint of communication system 680 is that only a single IT
Policy may be active on any user’s device (UE 150). Accord-
ing to an aspect of the present disclosure, the conflict resulting
from the apparent assignment of two different I'T Policies to a
user (and thus the user’s UE 150) can be reconciled through
the use of reconciliation objects and reconciliation function-
ality sets.

A reconciliation functionality set allows the plug-in server
infrastructure 102 to perform reconciliation without knowing
exactly what the objects being reconciled are. One of the
capabilities of a reconciliation functionality set is the ability
to furnish to the plug-in server infrastructure a list of the
reconciliation objects supported by a plug-in such as 103,
104, or 105. There are also several options with regard to a
reconciliation operation that are made available through the
functionality set. Specific business rules for resolving con-
flicts are implemented by each of the plug-ins 103, 104, or
105. The plug-in server infrastructure 102 can resolve con-
flicts by passing a set of reconciliation objects (of the specific
types supported by the corresponding plug-in 103, 104, or
105) through the functionality set method to have the plug-in
choose the reconciled value.

Any number of administration operations can cause the
need for reconciliation to take place. Each specific situation
that requires reconciliation can be represented by a reconcili-
ation event. In other words, reconciliation events may be
caused or generated by a number of administration opera-
tions, which can include:

anobject has been assigned to a user, group, service, server,
or domain or unassigned from a user, group, service, server,
or domain;



US 9,201,669 B2

9

a user or group has been added as a member of a group or
removed as a member from a group;

a user has been added to a service or removed from a
service;

auser has been added to a server or removed from a server;

a user has been added to a domain or removed from a
domain;

a ranking of a set of reconciliation objects has changed;

a reconciliation object has been deleted;

a reconciliation object has been modified;

a user has activated a device;

a user has changed from one device to another;

a personal identification number (PIN) for a user’s device
has been set;

a user has moved to a different server within mobility
service 130; and

a UE 150 software (operating system (OS) bundle) has
changed.

Any number of rules may be used by a plug-in to reconcile
a conflict based on the constraints of the administration ser-
vice 100 and communications system 680, which may
include the business logic and security model needed to
administer the mobility service 130 and associated UE 150.
The rules may be extensive and complex. Different groups of
reconciliation rules may be applied depending on the cat-
egory of the reconciliation object. Example sets of rules for
various types of reconciliation objects are provided below for
reconciliation objects of the following types: User/Group
Attributes; IT Policies; Applications; Application Control
Policies; Device Software Bundles; and Native Application
Settings.

User/Group Attribute Conflict Resolution Rule

(a) Whenever a reconciliation object is assigned directly to
a user, any reconciliation objects (of the same type) assigned
to groups of which the user is a member of are ignored.

IT Policy Conflict Resolution Rules

(a) Higher Ranked IT Policy Takes Precedence; and

(b) Each IT Policy in the domain is ranked against each of
the other IT Policies in the domain. When multiple IT Policies
are applied to a user, the highest ranked IT Policy is the
reconciled IT Policy.

Application Conflict Resolution Rules

(a) Only applications that are supported by the user’s cur-
rent device (UE 150) and software are considered for recon-
ciliation;

(b) Applications in a user assigned software configuration
take precedence over a group assigned software configura-
tion;

(c) An application with a higher version number takes
precedence over a lower version number;

(d) Reconciling an application requires first reconciling the
ACP for the application; in this case the disposition of an ACP
belonging to an application in a user attached software con-
figuration takes precedence over a group attached software
configuration; the disposition of required takes precedence
over optional which takes precedence over disallowed; the
ACP settings are those from the highest ranked ACP that has
the reconciled disposition;

(e) The delivery mode of a reconciled application is defined
by a mode of push taking precedence over pull after consid-
ering a user attached software configuration taking prece-
dence over a group attached software configuration;

() The delivery transport of a reconciled application is
defined by a transport of wireless and wired if both are speci-
fied after considering a user attached software configuration
taking precedence over a group attached software configura-
tion;

10

15

20

25

30

35

40

45

50

55

60

65

10

(g) Wireless delivery transport is only reconciled if the
user’s device supports wireless application loading;

(h) Applications are only reconciled if all of the application
and module dependencies are resolved by reconciled appli-
cations;

(1) Applications are only reconciled if there are no conflict-
ing modules already present on the user’s device (optional
rule);

(j) Applications are only reconciled for wireless delivery
transport if there are no circular dependencies; and

(k) Applications are only reconciled if they will fit into the
device memory; memory checking is performed for applica-
tions in the following order (stopping when memory is full):
applications with a disposition of required, a transport deliv-
ery of wireless, and a transport mode of push; applications
with a disposition of required, a transport delivery wired, a
transport mode of push; applications with a disposition of
optional, a transport delivery wireless, and a transport mode
of push; applications with a disposition of optional, a trans-
port delivery wired, and a transport mode of push; and appli-
cations with a disposition of optional, a transport delivery
wireless, and a transport mode of pull.

Application Control Policy (ACP) for Unlisted Applica-
tions Conflict Resolution Rules

(a) The disposition of an ACP for unlisted applications in a
user attached software configuration takes precedence over a
group attached software configuration;

(b) A disposition of disallowed takes precedence over
optional; and

(¢) The ACP settings are those from the highest ranked ACP
that has the reconciled disposition.

Device Software Bundle Conflict Resolution Rules

(a) Device software bundles in a user attached software
configuration takes precedence over a group attached soft-
ware configuration; and

(b) The highest ranked device software bundle that is sup-
ported by the user’s device and carrier is reconciled provided
it has a higher rank than the device software bundle that is
already installed on the user’s device.

Native Application Setting Conflict Resolution Rules

(a) Native application settings are reconciled on a setting
by setting basis;

(b) Native application settings belonging to a device soft-
ware configuration in a user attached software configuration
takes precedence over a group attached software configura-
tion;

(c) For the “calendar initial view” setting the reconciled
value is always the minimum number of days specified; val-
ues ordered from min to max are: day, week, month, agenda,
last;

(d) For the “calendar keep appointments”™ setting the rec-
onciled value is always the maximum number of days;

(e) For the “email confirm delete” setting the reconciled
value of yes takes precedence over no;

() For the “email hide sent messages” setting the recon-
ciled value of no takes precedence over yes;

(g) For the “email save copy in sent folder” setting the
reconciled value of yes takes precedence over no;

(h) For the “address book sort by” setting the reconciled
value of “first name” takes precedence over “last name”
which takes precedence over “company’’; and

(1) Each of the above settings also have an attribute which
defines if the setting is visible or not on the user’s device and
whether or not the user can change the value of the setting; the
precedence order of the attribute for a setting is: locked and
visible takes precedence over locked and hidden which takes
precedence over unlocked and visible.



US 9,201,669 B2

11

The reconciliation rules listed above are merely examples
of reconciliation rules for a particular example embodiment
of an administration service 100 for use in conjunction with
an example communications system 680 and various associ-
ated requirements and constraints. Additional or varied rules
may be needed for the listed categories of reconciliation
objects and additional rules likely would be needed for any
categories of reconciliation objects that might be added
through reconciliation functionally sets that may be added.
One of skill in the art will appreciate how these rules may be
modified for use with an administration service 100 subject to
different requirements and constraints.

FIG. 3 is a flow diagram depicting a method of reconcili-
ation that resolves the conflicts using the reconciliation
objects that are triggered by the reconciliation events that can
be used by administration service 100. The steps or opera-
tions described herein are examples. There may be many
variations to these steps or operations without departing from
the scope of this disclosure. For instance, where appropriate,
the steps may be performed in a differing order, or steps may
be added, deleted, or modified.

At step 301, administration service 100 gets a reconcilia-
tion event that was triggered. At step 302, based on the rec-
onciliation event, administration service 100 can determine a
scope of change. The scope of change can have the following
dimensions: users who are affected by the change; and rec-
onciliation object types that are affected by the change.

At step 303, administration service 100 can reconcile each
element of change. In other words, for each reconciliation
object for a specific user, administration service 100 can
determine the reconciled view of that object type, wherein the
reconciled view is determined by the set of rules related to the
object. The rules required to reconcile a set of objects are
implemented by a plug-in (such as 103, 104 or 105) and
performed by the plug-in for the plug-in server infrastructure
102 using a reconciliation functionality set.

At step 304, based on the reconciled view of each object
type for each user, administration service 100 can prepare for
the delivery of the reconciled object. Preparing for the deliv-
ery of the reconciled object for a user can result in a series of
job tasks (all belonging to a single job for the reconciliation
event) being created to perform the actual delivery. The tasks
include appropriate dependencies when ordering of the deliv-
eries is important. Jobs and tasks are described below.

At step 305, after processing for the reconciliation event is
complete, any post-reconciliation processing can be per-
formed. Some events can require post-reconciliation process-
ing. This processing is done through the reconciliation func-
tionality set. An example of post-reconciliation processing is
the physical delete of alogically deleted reconciliation object.
The detailed reconciliation process can involve several
queues to support scalable asynchronous processing of rec-
onciliation events.

Job Management

A plug-in such as 103, 104, and 105 or administration
service 100 can use jobs and tasks to accomplish their func-
tionality (e.g., assigning attributes to a user). A plug-in 103,
104, or 105 or the administration service 100 itself can create
any number of jobs within the administration service 100 and
any plug-in 103, 104, or 105 or administration service 100 can
create any number of tasks within any of the jobs within
administration service 100. Tasks can operate to install or
remove software (i.e., via an attribute for a software configu-
ration) onto or from UEs 150. Several types of tasks are
defined, including INSTALL, UNINSTALL, UPGRADE,

10

15

20

25

35

40

45

50

55

60

65

12

and DOWNGRADE task types that correspond to installing,
uninstalling, upgrading, and downgrading software on UEs
150.

FIG. 4 is a flow diagram depicting an example method of
creating and executing a job, effectively showing the life
cycle of a job. The steps or operations described herein are
examples. There may be many variations to these steps or
operations without departing from the scope of this disclo-
sure. For instance, where appropriate, the steps may be per-
formed in a differing order, or steps may be added, deleted, or
modified.

At step 401 a plug-in, such as 103, 104, or 105 or admin-
istration service 100 can create a job that is open for tasks to
be added. At step 402, the plug-in 103, 104, or 105, or the
administration service 100 can create tasks are created one at
atime and add the tasks to any open job. During the creation,
each task receives a number associated with the time the task
was created such that tasks with lower numbers are can be
identified as being created before tasks with higher numbers.
One task can represent the delivery or removal of a reconciled
view of an object type to or from a UE 150. At step 403, the
plug-in 103, 104, or 105, or the administration service 100
can close the job is so that further tasks cannot be added and
so that the job can be prepared for execution. A number of
operations are carried out during job closure, which is
described in more detail below. At step 404, administration
service 100 can add default job scheduling and throttling
parameters to the job. These job scheduling and throttling
parameters can be changed at any by the plug-in 103, 104, or
105, or administration service 100. At step 405, administra-
tion service 100 can make the job ready for execution. At step
406, administration service 100 can execute the tasks of the
job, possibly with multiple automatic retries when certain
failure conditions occur. At step 407, when all tasks of the job
have completed (successtully or with failure), administration
service 100 can mark the job as completed.

The job closure process makes a job ready to be executed.
During a job close process, the job is optimized according to
predefined optimization rules to improve system perfor-
mance. Initially all tasks within the job being closed are
optimized with respect to just those tasks in the job being
closed. An example of optimization rules for this case can
include:

When a lower number INSTALL task (T1) already exists,
the higher number INSTALL task (T2) is optimized out by
task T1.

When a lower number INSTALL task (T1) already exists,
the higher number UNINSTALL task (T2) is optimized out
by task T1.

When a lower number INSTALL task (T1) already exists,
the higher number UPGRADE task (T2) is optimized out by
task T1.

When a lower number INSTALL task (T1) already exists,
the higher number DOWNGRADE task (12) is optimized out
by task T1.

When a lower number UNINSTALL task (T1) already
exists, the higher number INSTALL task (T2) is optimized
out by task T1.

When a lower number UNINSTALL task (T1) already
exists, the higher number UNINSTALL task (T2) is opti-
mized out by task T1.

When a lower number UNINSTALL task (T1) already
exists, the higher number UPGRADE task (T2) is optimized
out by task T1.

When a lower number UNINSTALL task (T1) already
exists, the higher number DOWNGRADE task (T2) is opti-
mized out by task T1.



US 9,201,669 B2

13

When alower number UPGRADE task (T1) already exists,
the higher number UNINSTALL task (T2) is optimized out
by task T1.

When alower number UPGRADE task (T1) already exists,
the higher number UPGRADE task (T2) is optimized out by
task T1.

When alower number UPGRADE task (T1) already exists,
the higher number DOWNGRADE task (12) is optimized out
by task T1.

When a lower number DOWNGRADE task (T1) already
exists, the higher number UNINSTALL task (T2) is opti-
mized out by task T1.

When a lower number DOWNGRADE task (T1) already
exists, the higher number UPGRADE task (T2) is optimized
out by task T1.

When a lower number DOWNGRADE task (T1) already
exists, the higher number DOWNGRADE task (T2) is opti-
mized out by task T1.

The above-listed rules may be generalized as follows:
INSTALL and UNINSTALL tasks with lower numbers opti-
mize out INSTALL, UNINSTALL, UPGRADE, and
DOWNGRADE tasks with higher numbers. Also,
UPGRADE and DOWNGRADE tasks with lower numbers
optimize out UNINSTALL, UPGRADE, and DOWN-
GRADE tasks with higher numbers.

Additionally, all tasks within the job being closed can be
optimized with respect to all tasks in all other jobs. The
optimization rules in this case are as follows:

When an INSTALL task (T1) already exists and a new
INSTALL task (T2) is being closed, task T1 is optimized out
by task T2.

When an INSTALL task (T1) already exists and a new
UNINSTALL task (T2) is being closed, task T1 is optimized
out by task T2.

When an UNINSTALL task (T1) already exists and a new
INSTALL task (T2) is being closed, task T1 is optimized out
by task T2.

When an UNINSTALL task (T1) already exists and a new
UNINSTALL task (T2) is being closed, task T1 is optimized
out by task T2.

When an UPGRADE task (T1) already exists and a new
INSTALL task (T2) is being closed, task T1 is optimized out
by task T2.

When an UPGRADE task (T1) already exists and a new
UNINSTALL task (T2) is being closed, task T1 is optimized
out by task T2.

When an UPGRADE task (T1) already exists and a new
UPGRADE task (T2) is being closed, task T1 is optimized out
by task T2.

When an UPGRADE task (T1) already exists and a new
DOWNGRADE task (T2) is being closed, task T1 is opti-
mized out by task T2.

When a DOWNGRADE task (T1) already exists and a new
INSTALL task (T2) is being closed, task T1 is optimized out
by task T2.

When a DOWNGRADE task (T1) already exists and a new
UNINSTALL task (T2) is being closed, task T1 is optimized
out by task T2.

When a DOWNGRADE task (T1) already exists and a new
UPGRADE task (T2) is being closed, task T1 is optimized out
by task T2.

When a DOWNGRADE task (T1) already exists and a new
DOWNGRADE task (T2) is being closed, task T1 is opti-
mized out by task T2.

The above-listed rules may be generalized as follows:
Existing INSTALL tasks can be optimized out by new
INSTALL or UNINSTALL tasks that are being closed. Exist-

10

15

20

25

30

35

40

45

50

55

60

65

14
ing UNINSTALL tasks can be optimized out by new
INSTALL or UNINSTALL tasks that are being closed. Exist-
ing UPGRADE and DOWNGRADE tasks can be optimized
out by new INSTALL, UNINSTALL, UPGRADE, or
DOWNGRADE tasks that are being closed.

Additionally or alternatively, a task can be added to a job
that has already been closed and optimized. The job can be
briefly reopened and then closed to add the new task. In this
case, the optimization process can be skipped so that the job
will not be optimized with respect to the new task.

A job also takes on scheduling and throttling parameters
that can be changed at any time until the job is complete. Each
object type can have its own set of scheduling and throttling
parameters that apply to all of a job’s tasks that pertain to the
specific object type. Scheduling parameters for job tasks can
schedule the execution of the tasks to occur at any of one or
more times on any of one or more days of a week. Addition-
ally, a scheduling parameter can schedule the execution of a
job to begin at some future date. Job throttling parameters,
which can quantify a number of job slots, can limit the execu-
tion of a task of a job and can be specified on a job basis by the
number of tasks for a specific object type executing simulta-
neously and/or by the number of tasks executing in a sched-
uling window by limiting the number of job slots available to
a job. A scheduling window is a contiguous period of time
during a particular day during which a task may execute as
defined by its scheduling parameters. System throttling
parameters, which can quantify a number of system slots, can
also be specified to limit the total number of tasks executing
simultaneously across all jobs of the administration service
100 for a specific object type by limiting the number of
system slots available to the administration service 100.

Additionally, a specific object type can be defined such that
only one task may be executing at any instant of time that is
related to a particular user of mobility service 130, regardless
of the particular instance of the object. In such a case, a
running dependency is created among all the tasks for all jobs
that pertain to that specific object type for a user. This effec-
tively single-threads this type of reconciliation object type for
a user. The running dependencies between all such tasks are
adjusted dynamically as required as the various tasks execute.

FIG. 5A and FIG. 5B are a flow diagram illustrating an
example method 500 for executing tasks and processing a
finished task. The steps or operations described herein are
examples. There may be many variations to these steps or
operations without departing from the scope of this disclo-
sure. For instance, where appropriate, the steps may be per-
formed in a differing order, or steps may be added, deleted, or
modified.

When a job timer wakes up, the system will execute ready
tasks from jobs based on their priority of execution. System
throttling and job throttling parameters determine how many
tasks can be executed at the same time. A task can only be
executed if it has been granted a job slot (for job throttling)
and a system slot (for system throttling). Ifa system slot is not
available to execute a task, then information is recorded
regarding what kind of task is waiting for a system slot in
order to be executed. Once both a job slot and a system slot
become available, the job manager will pick a task to execute
based on its priority among the pending tasks.

The execution of a task can involve delivering an object to
the UE 150. The details of how to do the delivery can be
known by the plug-in that supports the delivery functionality
set for that particular reconciliation object type. Hence deliv-
ery is initiated by the job manager of the administration



US 9,201,669 B2

15

service 100, even though it is carried out via a plug-in that is
registered the implements the delivery functionality set for
the object type.

When a task is completed successfully, then tasks that
depend on the successfully completed task can be marked
ready to deliver. If there are ready tasks due to the completed
task, then the job manager will deliver these ready tasks
subject to the system and job throttling parameters at that
time. If there are no dependent tasks, the job manager will try
to find another ready task in the job for next execution. When
a task is not completed successfully, the job manager can
mark the dependent tasks of the unsuccessfully completed
task as failed and find a ready task in the job that can be
executed next.

A particular UE 150 is serviced via a specific mobility
server of mobility service 130. Tasks are executed such that
the load of task execution is balanced across the various
servers of mobility service 130.

Additionally, in the case of a job task that has not com-
pleted within a system allowed time threshold, the job man-
ager will set the task to be timed out, so that the job and system
slots can be used to execute another task.

In step 510, a portion of method 500 for executing tasks
begins responsive to a “wake-up” expiration of a job timer. In
step 512, the administration service 100 finds the highest
priority job associated with the timer of which the processing
window is open. In step 514, if no job is found, the method
exits. In step 516, the administration service 100 obtains the
number of ready tasks N1 in the job (or the predefined batch
size, whichever is smaller). In step 518, if no ready tasks are
found, the method exits.

In step 520, the administration service 100 requests a num-
ber N1 job slots for the job. The result of the request is a
number N2 of job slots granted. In step 522, a check is made
to determine if system slots were granted. If so execution
continues in step 524, in which the system slots pending count
is decremented by the number N2 of granted job slots, and
execution continues in step 534. Otherwise, execution con-
tinues in step 526. In step 526 (no system slots granted), the
administration service 100 requests a number of system slots
equal to the number N2 of granted job slots. The result of the
request is a number N3 of system slots granted.

In step 528, a check is made to determine if the number N2
of granted job slots is equal to the number N3 of granted
system slots. If so, execution continues with step 534. Other-
wise, execution continues with step 530, in which the job
system slots pending count is incremented by the difference
between the number N2 of granted job slots and the number
N3 of granted system slots (i.e., N2-N3). In step 532, in which
a check is made to determine if the number N3 of granted
system slots is zero (meaning that no system slots were
granted). If no system slots were granted, no task can be
executed, and the method exits. However, in step 534, if
system slots were granted earlier in one of steps 522 or 530,
then a number of tasks equal to the number N3 of granted
system slots are delivered. Generally, “delivery” means that
an object or other content is delivered to the UE 150.

A portion of method 550 for processing a finished task
(which is a member, for example, of a job F), begins in step
550, when the work of the task is complete. In step 552, the
administration service 100 finds each task that depends on the
successfully “finished” task and if such task has no other
unmet dependencies, administration service 100 marks such
task as ready for execution. Such tasks may be grouped as a
task set D.

In step 554, a check is made to determine if any such tasks
have been found. If so, execution continues in step 556, in

20

40

45

55

16

which each of the tasks of task set D are selected for execu-
tion, and then in steps 520, etc. Otherwise, execution contin-
ues in step 558, in which the administration service 100 finds
the highest priority job pending for system slots which has
one job slot available and its processing window open (mean-
ing that the job has the same object type as that of recently-
finished task.

In step 560, a check is made to determine if an eligible job
has been found. If so, execution continues in step 562 in
which the job slot is returned to the pool of job slots, in step
564 in which the task is prepared for execution, and then in
steps 520, etc. If no eligible job was found in step 560, then
execution continues in step 566, to find a ready task of job F
of the same object type as that of the recently-finished task.

In step 568, a check is made to determine if a ready task was
found. If so, the task, which reuses recently-finished task job
and system slots, is executed in step 534, etc. Otherwise,
execution continues in step 570, in which the job and system
slots reserved for the tasks of this job are returned to their
respective pools. In step 572, the administration service 100
finds a ready task, which may be from a different job. If a
ready task is found, then the number N1 of requested job slots
is set to 1, and execution continues at steps 520, etc. If no
ready task is found, the method exits at step 576.

Embodiments described herein may be realized as a com-
puter program product, comprising a computer readable
medium, computer instructions stored on the computer read-
able medium, the computer instructions being executable by
one or more processors in a mobile communications device
for implementing any of the methods described in this appli-
cation.

Although example embodiments of this disclosure have
been depicted and described in detail herein, it will be appar-
ent to those skilled in the relevant art that various modifica-
tions, additions, substitutions, and the like can be made with-
out departing from the concepts and embodiments disclosed
herein, and these are therefore considered to be within the
scope of the present subject matter as defined in the following
claims.

What is claimed is:

1. A method of an administration server comprising:

assigning a first attribute to one or more objects by a plug-

in of an administration service of the administration
server;
adding one or more tasks by one or more plug-ins to a job
created by one of the one or more plug-ins, wherein a
plurality of system throttling parameters and job throt-
tling parameters of the job and the one or more tasks
determine a number of tasks that can be executed at a
same time, and wherein each task can only be executed
when it has been granted a system slot and a job slot; and

wherein the plug-in implements a method of a functional-
ity set to extend the one or more objects with the first
attribute transparently to the administration server, the
method being callable by the administration service to
perform the assigning.

2. The method of claim 1 wherein the assigning is in
response to the first attribute being assigned to one of'a group,
a server, a service, and a domain, and wherein the plurality of
system throttling parameters quantify a number of system
slots to limit a total number of tasks executing simultaneously
all jobs of the administration service, and the job throttling
parameters quantify a number of job slots to limit the execu-
tion of a task of a job.

3. The method of claim 2, further comprising:

displaying the first attribute on a graphical user interface

(GUI) of the administration service at an integration



US 9,201,669 B2

17

point defined by the administration service and identi-
fied by the plug-in, and wherein the job and the one or
more tasks each comprise a scheduling parameter and a
throttling parameter, the scheduling parameter sched-
ules an execution date, and the throttling parameter
quantifies a number of job slots used to limit the execu-
tion of a task of a job.

4. The method of claim 1, wherein the first attribute is one
of a policy, a software configuration, a required application,
an optional application, a disallowed application, a device
software configuration, a device software bundle, a native
application setting, or an application setting.

5. The method of claim 2, wherein the one or more objects
inherit a second attribute from the one of the group, the server,
the service, and the domain.

6. The method of claim 5, further comprising reconciling
the assignment of the first attribute with the assignment of the
second attribute when the first attribute conflicts with the
second attribute.

7. The method of claim 5, further comprising reducing a
number of duplicate tasks that assign the first attribute and the
second attribute to the one or more objects when the first
attribute is similar to the second attribute and is assigned to a
same one of the one or more objects.

8. A method of an administration server comprising:

triggering a reconciliation event by changing an assign-

ment of an attribute of one or more users that each
comprise one or more objects of one or more plug-ins by
the one or more plug-ins to extend the one or more
objects with the changed assignment of an attribute
transparently to the administration server;

determining a scope of the one or more users affected by

changing the assignment;

determining one or more objects of the one or more plug-

ins that are affected by changing the assignment;
reconciling the assignment with any conflicting assign-
ments via one or more reconciliation objects, the con-
flicting assignments determined from one of the scope
and the one or more objects that are affected; and
adding one or more tasks by one or more plug-ins to a job
created by one of the one or more plug-ins, wherein a
plurality of system throttling parameters and job throt-
tling parameters of the job and the one or more tasks
determine a number of tasks that can be executed at a
same time, and wherein each task can only be executed
when it has been granted a system slot and a job slot.

9. The method of claim 8, wherein changing the assign-
ment of the attribute is via changing the association of a user
to at least one of a group, a service, a server, or a domain, and
wherein the plurality of system throttling parameters quantify
a number of system slots to limit a total number of tasks
executing simultaneously all jobs of the administration server
and the job throttling parameters quantity a number of job
slots to limit the execution of a task of a job.

10. The method of claim 9, wherein the changing the
assignment of the attribute is via directly changing the
attribute of at least one of a user, a group, a service, a server,
and a domain, and wherein the job and the one or more tasks
each comprise a scheduling parameter and a throttling param-
eter, the scheduling parameter schedules an execution date,
and the throttling parameter quantifies a number of job slots
used to limit the execution of a task of a job.

11. The method of claim 8, wherein the attribute is one of
a policy, a software configuration, a required application, an
optional application, a disallowed application, a device soft-
ware configuration, a device software bundle, a native appli-
cation setting, or an application setting.

20

25

30

40

45

65

18

12. The method of claim 8, wherein the triggering a recon-
ciliation event is caused by changing a ranking of the one or
more reconciliation objects.

13. The method of claim 8, wherein one of the one or more
reconciliation objects is one of deleted and modified.

14. The method of claim 8, wherein the triggering a recon-
ciliation event is caused by one of activating a first wireless
mobile device, changing from the first wireless mobile device
to a second wireless mobile device, setting a personal identi-
fication number (PIN) for the wireless mobile device, moving
to a different server of a mobility service, and changing an
operating system (OS) bundle of the first wireless mobile
device.

15. A method of an administration server comprising:

assigning an attribute to an object of one or more users via

an administration service; adding one or more tasks by
one or more plug-ins to a job created by one ofthe one or
more plug-ins, the one or more tasks performing the
assigning;

removing one or more of the one or more tasks from the job

to optimize the job based on a set of rules;

performing the assigning by the one or more plug-ins to

extend the one or more objects with the attribute trans-
parently to the administration server; and

adding one or more tasks by one or more plug-ins to a job

created by one of the one or more plug-ins, wherein a
plurality of system throttling parameters and job throt-
tling parameters of the job and the one or more tasks
determine a number of tasks that can be executed at a
same time, and wherein each task can only be executed
when it has been granted a system slot and a job slot.

16. The method of claim 15, further comprising:

closing the job before the removing;

reopening the job after the removing;

adding at least one additional task to the job; and

closing the job after the adding.

17. The method of claim 15, wherein the attribute is one of
a policy, a software configuration, a required application, an
optional application, a disallowed application, a device soft-
ware configuration, a device software bundle, a native appli-
cation setting, or an application setting, and wherein the plu-
rality of system throttling parameters quantify a number of
system slots to limit a total number of tasks executing simul-
taneously all jobs of the administration service, and the job
throttling parameters quantitfy a number of job slots to limit
the execution of a task of a job.

18. The method of claim 17, wherein the job and the one or
more tasks each comprise scheduling parameter and a throt-
tling parameter, the scheduling parameter schedules an
execution date, and the throttling parameter quantifies a num-
ber of job slots used to limit the execution of a task of a job.

19. The method of claim 18, wherein a plurality of system
throttling parameters and the job throttling parameters of the
job and the one or more tasks determine a number of tasks that
can be executed at a same time.

20. The method of claim 19, wherein each task can only be
executed when it has been granted a system slot and a job slot,
the plurality of system throttling parameters quantify a num-
ber of system slots to limit a total number of tasks executing
simultaneously all jobs of the administration service, and the
job throttling parameters quantify a number of job slots to
limit the execution of a task of a job.

21. The method as claimed in claim 1, further comprising:

triggering a reconciliation event by changing an assign-

ment of the first attribute of one or more users compris-
ing the one or more objects of one or more plug-ins;



US 9,201,669 B2

19

determining a scope of the one or more users affected by
changing the assignment; determining one or more
objects of the one or more plug-ins that are affected by
changing the assignment;

reconciling the assignment with any conflicting assign-

ments via one or more reconciliation objects, the con-
flicting assignments determined from one of the scope
and the one or more objects determined to be affected;
and

adding one or more tasks by one or more plug-ins to a job

created by one of the one or more plug-ins, wherein a
plurality of system throttling parameters and job throt-
tling parameters of the job and the one or more tasks
determine a number of tasks that can be executed at a
same time, and wherein each task can only be executed
when it has been granted a system slot and a job slot.

22. The method as claimed in claim 21, wherein the chang-
ing an assignment of the first attribute is via changing the
association of a user to at least one of a group, a service, a
server, or a domain.

23. The method as claimed in claim 21, wherein the chang-
ing an assignment of the first attribute is via directly changing
the first of at least one of a user, a group, a service, a server,
and a domain.

24. The method as claimed in claim 21, wherein the trig-
gering a reconciliation event is caused by changing a ranking
of the one or more reconciliation objects.

25. The method as claimed claim 21, wherein one of the
one or more reconciliation objects is one of deleted and modi-
fied.

26. The method as claimed in claim 21, wherein the trig-
gering a reconciliation event is caused by one of activating a
first wireless mobile device, changing from the first wireless
mobile device to a second wireless mobile device, setting a
personal identification number (PIN) for the wireless mobile

5

10

15

25

30

20

device, moving to a different server of a mobility service, and
changing an operating system (OS) bundle of the first wire-
less mobile device.

27. The method as claimed in claim 1, further comprising:

adding one or more tasks by one or more plug-ins to a job
created by one of the one or more plug-ins, the one or
more tasks performing the assigning;

removing one or more of the one or more tasks from the job
to optimize the job based on a set of rules; and

performing the assigning by the plug-in.

28. The method as claimed in claim 27, further comprising:

closing the job before the removing;

reopening the job after the removing;

adding at least one additional task to the job; and

closing the job after the adding.

29. The method as claimed in claim 27, wherein the job and

the one or more tasks each comprise a scheduling parameter
and a throttling parameter, the scheduling parameter sched-
ules an execution date, and the throttling parameter quantifies

2 anumber of job slots used to limit the execution of a task of a
job.

30. The method as claimed in claim 29, wherein a plurality

of system throttling parameters and the job throttling param-
eters of the job and the one or more tasks determine a number
of tasks that can be executed at a same time.

31. The method as claimed in claim 30, wherein each task

can only be executed when it has been granted a system slot
and a job slot, the plurality of system throttling parameters
quantify a number of system slots to limit a total number of
tasks executing simultaneously all jobs of the administration
service, and the job throttling parameters quantify a number
of job slots to limit the execution of a task of a job.

32. A server configured to perform the method of claim 1.
33. A non-transitory computer readable medium storing a

set of instructions configured to perform the steps of claim 1.

#* #* #* #* #*



